Eye Selector Logic for a Coordinated Cell Cycle Exit

نویسندگان

  • Carla S. Lopes
  • Fernando Casares
چکیده

Organ-selector transcription factors control simultaneously cell differentiation and proliferation, ensuring the development of functional organs and their homeostasis. How this is achieved at the molecular level is still unclear. Here we have investigated how the transcriptional pulse of string/cdc25 (stg), the universal mitotic trigger, is regulated during Drosophila retina development as an example of coordinated deployment of differentiation and proliferation programs. We identify the eye specific stg enhancer, stg-FMW, and show that Pax6 selector genes, in cooperation with Eya and So, two members of the retinal determination network, activate stg-FMW, establishing a positive feed-forward loop. This loop is negatively modulated by the Meis1 protein, Hth. This regulatory logic is reminiscent of that controlling the expression of differentiation transcription factors. Our work shows that subjecting transcription factors and key cell cycle regulators to the same regulatory logic ensures the coupling between differentiation and proliferation programs during organ development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cyclin-Dependent Kinase Inhibitor, Dacapo, Is Necessary for Timely Exit from the Cell Cycle during Drosophila Embryogenesis

In a screen for genes that interact with the Rap1 GTPase, we have identified a Drosophila gene, dacapo (dap), which is a member of the p21/p27 family of cdk inhibitors. Unlike mammalian cdk inhibitors studied to date, dap is essential for normal embryonic development. Dacapo inhibits cyclin-cdk activity in vitro. Overexpressing dap during eye development interferes with cell cycle progression a...

متن کامل

Mitosis in Neurons: Roughex and APC/C Maintain Cell Cycle Exit to Prevent Cytokinetic and Axonal Defects in Drosophila Photoreceptor Neurons

The mechanisms of cell cycle exit by neurons remain poorly understood. Through genetic and developmental analysis of Drosophila eye development, we found that the cyclin-dependent kinase-inhibitor Roughex maintains G1 cell cycle exit during differentiation of the R8 class of photoreceptor neurons. The roughex mutant neurons re-enter the mitotic cell cycle and progress without executing cytokine...

متن کامل

The Molecular Chaperone Hsp90 Is Required for Cell Cycle Exit in Drosophila melanogaster

The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP...

متن کامل

p57 and Hes1 coordinate cell cycle exit with self-renewal of pancreatic progenitors.

In developing organs, the regulation of cell proliferation and cell cycle exit is coordinated. How this coordination is achieved, however, is not clear. We show that the cyclin kinase inhibitor p57 regulates cell cycle exit of progenitors during the early stages of pancreas formation. In the absence of p57, the number of cycling progenitors increases, although expansion of progenitor population...

متن کامل

A double-assurance mechanism controls cell cycle exit upon terminal differentiation in Drosophila.

Terminal differentiation is often coupled with permanent exit from the cell cycle, yet it is unclear how cell proliferation is blocked in differentiated tissues. We examined the process of cell cycle exit in Drosophila wings and eyes and discovered that cell cycle exit can be prevented or even reversed in terminally differentiating cells by the simultaneous activation of E2F1 and either Cyclin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015